Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation

Identifieur interne : 000009 ( Chine/Analysis ); précédent : 000008; suivant : 000010

Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation

Auteurs : RBID : Pascal:14-0084557

Descripteurs français

English descriptors

Abstract

Carbon doping in hexagonal multi-walled boron nitride nanotubes (BNNTs) through ion implantation is successfully achieved. Nuclear reaction analysis confirms that carbon atoms are homogeneously doped into the BNNTs, while Fourier transform infrared spectroscopy reveals that the C-N bonding is produced. Moreover, B-C-N phases are confirmed by X-ray Diffraction and Raman spectroscopy after C+ ion implantation. High resolution transmission electron microscopy results show that BNNTs are slightly damaged by C+ ion implantation. UV absorption spectra show that carbon doping reduces the band gap of BNNTs from 5.5 to 4.6 eV by increasing C+ ion fluence. It is suggested that the bandgap decrease is due to carbon doping as well as defect formation in BNNTs. Carbon implantation in h-BNNTs is proposed to the knockout ejections of B and N atoms by high energy C+ ions and consequently make ternary B-C-N structure.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084557

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation</title>
<author>
<name sortKey="Ahmad, Ishaq" uniqKey="Ahmad I">Ishaq Ahmad</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Physics, Quaid-i-Azam University</s1>
<s2>Islamabad 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad 44000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Usman, M" uniqKey="Usman M">M. Usman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Physics, Quaid-i-Azam University</s1>
<s2>Islamabad 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad 44000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rabab Naqvi, S" uniqKey="Rabab Naqvi S">S. Rabab Naqvi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Physics, Quaid-i-Azam University</s1>
<s2>Islamabad 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad 44000</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, International Islamic University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iqbal, Javed" uniqKey="Iqbal J">Javed Iqbal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, International Islamic University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LU BO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory for Microstructures, Shanghai University</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YAN LONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Shanghai Institute of Applied Physics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dee, C F" uniqKey="Dee C">C. F. Dee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia</s1>
<s2>43600 Selangor</s2>
<s3>MYS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>43600 Selangor</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baig, Aslam" uniqKey="Baig A">Aslam Baig</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Center for Physics, Quaid-i-Azam University</s1>
<s2>Islamabad 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Islamabad 44000</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084557</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084557 INIST</idno>
<idno type="RBID">Pascal:14-0084557</idno>
<idno type="wicri:Area/Main/Corpus">000082</idno>
<idno type="wicri:Area/Main/Repository">000033</idno>
<idno type="wicri:Area/Chine/Extraction">000009</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1388-0764</idno>
<title level="j" type="abbreviated">J. nanopart. res.</title>
<title level="j" type="main">Journal of nanoparticle research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Arsenic additions</term>
<term>Boron</term>
<term>Boron nitride</term>
<term>Carbon</term>
<term>Carbon additions</term>
<term>Damage</term>
<term>Defect formation</term>
<term>Doping</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Fluence</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Hexagonal lattices</term>
<term>High energy</term>
<term>Indium additions</term>
<term>Ion implantation</term>
<term>Multiphase system</term>
<term>Nanotubes</term>
<term>Nuclear reaction analysis</term>
<term>Raman spectra</term>
<term>Raman spectroscopy</term>
<term>Substitutional impurities</term>
<term>Transmission electron microscopy</term>
<term>Ultraviolet spectra</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Impureté substitutionnelle</term>
<term>Addition carbone</term>
<term>Réseau hexagonal</term>
<term>Nitrure de bore</term>
<term>Nanotube</term>
<term>Implantation ion</term>
<term>Addition indium</term>
<term>Analyse réaction nucléaire</term>
<term>Carbone</term>
<term>Dopage</term>
<term>Spectrométrie FTIR</term>
<term>Système multiphase</term>
<term>Diffraction RX</term>
<term>Spectre Raman</term>
<term>Spectrométrie Raman</term>
<term>Microscopie électronique transmission</term>
<term>Endommagement</term>
<term>Spectre absorption</term>
<term>Spectre UV</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Fluence</term>
<term>Addition arsenic</term>
<term>Formation défaut</term>
<term>Haute énergie</term>
<term>Bore</term>
<term>BN</term>
<term>6146</term>
<term>8107D</term>
<term>7830N</term>
<term>7840R</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon doping in hexagonal multi-walled boron nitride nanotubes (BNNTs) through ion implantation is successfully achieved. Nuclear reaction analysis confirms that carbon atoms are homogeneously doped into the BNNTs, while Fourier transform infrared spectroscopy reveals that the C-N bonding is produced. Moreover, B-C-N phases are confirmed by X-ray Diffraction and Raman spectroscopy after C
<sup>+</sup>
ion implantation. High resolution transmission electron microscopy results show that BNNTs are slightly damaged by C
<sup>+</sup>
ion implantation. UV absorption spectra show that carbon doping reduces the band gap of BNNTs from 5.5 to 4.6 eV by increasing C
<sup>+</sup>
ion fluence. It is suggested that the bandgap decrease is due to carbon doping as well as defect formation in BNNTs. Carbon implantation in h-BNNTs is proposed to the knockout ejections of B and N atoms by high energy C
<sup>+</sup>
ions and consequently make ternary B-C-N structure.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1388-0764</s0>
</fA01>
<fA03 i2="1">
<s0>J. nanopart. res.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AHMAD (Ishaq)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>USMAN (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RABAB NAQVI (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IQBAL (Javed)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LU BO</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YAN LONG</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DEE (C. F.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BAIG (Aslam)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Physics, Quaid-i-Azam University</s1>
<s2>Islamabad 44000</s2>
<s3>PAK</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, International Islamic University</s1>
<s2>Islamabad</s2>
<s3>PAK</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory for Microstructures, Shanghai University</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Shanghai Institute of Applied Physics, Chinese Academy of Sciences</s1>
<s2>Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia</s1>
<s2>43600 Selangor</s2>
<s3>MYS</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>2170.1-2170.8</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28202</s2>
<s5>354000506112440300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084557</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of nanoparticle research</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Carbon doping in hexagonal multi-walled boron nitride nanotubes (BNNTs) through ion implantation is successfully achieved. Nuclear reaction analysis confirms that carbon atoms are homogeneously doped into the BNNTs, while Fourier transform infrared spectroscopy reveals that the C-N bonding is produced. Moreover, B-C-N phases are confirmed by X-ray Diffraction and Raman spectroscopy after C
<sup>+</sup>
ion implantation. High resolution transmission electron microscopy results show that BNNTs are slightly damaged by C
<sup>+</sup>
ion implantation. UV absorption spectra show that carbon doping reduces the band gap of BNNTs from 5.5 to 4.6 eV by increasing C
<sup>+</sup>
ion fluence. It is suggested that the bandgap decrease is due to carbon doping as well as defect formation in BNNTs. Carbon implantation in h-BNNTs is proposed to the knockout ejections of B and N atoms by high energy C
<sup>+</sup>
ions and consequently make ternary B-C-N structure.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H30N</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H40R</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Impureté substitutionnelle</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Substitutional impurities</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Impureza substitucional</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition carbone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Carbon additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Nitrure de bore</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Boron nitride</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Boro nitruro</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanotube</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanotubes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Implantation ion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ion implantation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Analyse réaction nucléaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nuclear reaction analysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Système multiphase</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Multiphase system</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sistema multifase</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>XRD</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Endommagement</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Damage</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Spectre UV</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Ultraviolet spectra</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Fluence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Fluence</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fluencia</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Addition arsenic</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Arsenic additions</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Formation défaut</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Defect formation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Formación defecto</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Haute énergie</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>High energy</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Alta energía</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Bore</s0>
<s2>NC</s2>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Boron</s0>
<s2>NC</s2>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>BN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107D</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7830N</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7840R</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0084557
   |texte=   Substitutional carbon doping of hexagonal multi-walled boron nitride nanotubes (h-MWBNNTs) via ion implantation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024